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We characterize the solution to a quadratic program with one linear equality constraint and

a lower bound of zero on all elements.

1 Quadratic Program Description

We consider a constrained quadratic program specified in the standard form:

min
x
{1

2
x′Hx + f ′x} (1)

s.t. A · x = beq (2)

x ≥ 0 (3)

where

• H is an n× n positive semi-definite matrix

• f is an n-dimensional vector

• A is an n-dimensional vector1

1We might want to relax this for any number of linear constraints (up to n) at a later time
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2 Semi-Analytical Gradient

In this section, we derive the solution to our quadratic program of interest using the KKT

optimality constraints. Note that although we can write down the solution analytically, this

solution will rely on Lagrange multipliers on the inequality constraints (that xi ≥ 0 for each

i = 1, . . . , n. Figuring out which of the constraints bind and which don’t is what requires

an iterative algorithm. Once we know which constraints bind at the optimum (meaning for

which i, the optimal solution has that xi = 0), the optimal solution using the remaining

non-zero dimensions can be described analytically.

The quadratic program in equation (1) can be reformulated with the following Lagrangian:

L =
1

2
x′Hx + f ′x− λ′ (A · x− beq)−

n∑
i=1

ωixi (4)

where λ is the Lagrangian multiplier on the equality constraint and ωi is the Lagrangian

multiplier on each inequality constraint (imposing that each bid is non-negative).

The optimal bid vector x∗ = arg minx L is therefore implicitly defined by the first order

conditions:

∂L
∂xi

(x∗) =
1

2

[∑
j 6=i

x∗jHij + 2x∗iHii

]
+ fi − λAi − ωi = 0 for each i = 1, . . . , n (5)

∂L
∂λ

(x∗) =
∑
i

Aixi − b = 0 (6)

∂L
∂ωi

(x∗) = −x∗i = 0, if ωi > 0. (7)

Rearranging equation 5, we obtain:

x∗i =
ωi + λAi − fi − 1

2

∑
j 6=i x

∗
jHij

Hii

for each i = 1, . . . , n (8)

Note that this still has the Lagrange multipliers λ and ωi inside the definition of x∗i . However,

given a [numerical] solution to x∗, the values of the Lagrange multipliers is pinned down (this

is because the Lagrange multipliers are the solution to the dual problem of the quadratic
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program).

In particular, by definition of the inequality constraints: xi ≥ 0, we have that for each i,

either x∗i > 0 (the constraint does not bind at i), in which case ωi = 0, or x∗i = 0, in which

case we obtain:

ωi =
1

2

∑
j 6=i

x∗jHij + fi − λAi

by plugging x∗ into equation 5.

Getting λ is a bit trickier and may not be necessary as the numerical quadratic solver should

be able to output the Lagrange multipliers on the equality constraints at the optimum

together with x∗i (note that this is an option in matlab’s quadprog function). However, we

need to be able to calculate the gradient of the Lagrange multipliers with respect to the

parameters of the problem, and so we do this analytically below.

By plugging in the definition of x∗ from equation 8 to the KKT condition in equation 6, we

obtain: ∑
i

Ai

[
1

Hii

(ωi + λAi − fi −
1

2

∑
j 6=i

x∗jHij) = b

]
Plugging in the definition of ωi from above, and then rearranging and simplifying, we obtain:

λ =

b+
∑

i:x∗i>0

Ai

Hii

(
fi + 1

2

∑
j 6=i x

∗
jHij

)
∑

i:x∗i>0

A2
i

Hii

. (9)

where the subscript {i : x∗i > 0} refers to those elements i for which the optimal x∗i is strictly

positive (i.e. the inequality constraint does not bind).

We can then plug the definitions of ω and λ into equation 8 to obtain an analytical solution

to x∗i for each element i without any Lagrange parameters (but still in terms of the solution of

the remaining elements x∗j , j 6= i, which are evaluated at the numerically computed optimum

):

x∗i =

Ai

 b+
∑

i:x∗
i
>0

Ai
Hii

(fi+ 1
2

∑
j 6=i x

∗
jHij)

∑
i:x∗

i
>0

A2
i

Hii

− fi − 1
2

∑
j 6=i

x∗jHij

Hii

(10)
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if x∗i > 0. Otherwise, x∗i = 0 and its derivative with respect to all parameters is zero as well.

3 Function Specification

For the general constraint conditions:

h(x) = 0

g(x) ≥ 0

calling a numerical optimizer requires the user to pass H, f , and two functions h and g. The

call may look as follows:

x = solver(H, f, A, h, g);

We would like to solve the optimization problem and compute the Jacobian matrix of the

solution with respect to the auxiliary parameters θ. In Stan, variables may depend on

model parameters (in this case θ) and fixed variables, δ, which can be stored in two arrays,

theta and delta. The arguments of the solver then all depend on θ and δ. For example

H = H(θ, δ).

Given this, we require the user to pass the four original arguments as functions and two

additional arguments which store θ and δ:

x = solver(H, f, h, g, theta, delta);

where the first arguments observe a strict signature. For example:

matrix H(theta, delta) {...}
vector f(theta, delta) {...}

From a user’s perspective, the overhead is rather severe, as the optimizer requires the defini-

tion of 4 new functions, and construction of the arrays theta and delta. To alleviate this,

we could overload the function to accept fixed variables arguments, instead of functions. We

may also start with a more specialized function, as a proof of concept. For now, we focus on

a special case of the KKT problem, as previously described. The inequality constraint is a

4



linear one of the form:

A · x = beq

and the inequality constraint simply requires x to have positive elements:

xi ≥ 0,∀i

In this scenario, the function signature should look as

x = solver(H, f, A, b eq, is positive, theta, delta);

which unfortunately remains very cumbersome.

At a C++ level, we have (i) an evaluation function:

Evaluate(H, f, A, b eq, is positive, theta, delta) {
MatrixXd H value = value of(H(theta, delta));

VectorXd f value = value of(f(theta, delta));

. . .

x = quad prog(H value, f value, A value, is positive);

. . .

return x;

}

and (ii) a new vari class with a custom chain method:

chain() {
Optimizer functor x closed(x, delta);

MatrixXd J;

begin nested();

Jacobian(x closed, theta, . . ., J);

end nested();
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. . .

}

The Optimizer functor defines a class of functions which return an analytical expression

for x, for a given θ. Note that in order to construct this analytical expression, we first need to

know which elements of x are non-zero, a task for which we require the numerical optimizer.
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