
11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 1 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

1.1 Spatial regression
model

1.2 Random-e!ects
and Response NNGP
models

1.3 Construction of ,A
D

2 Code NNGP Based
Model in Stan

2.1 Intro of
simulation data

2.2 Data block in Stan

2.3 Parameter and
model block in Stan

2.4 User-defined
likelihood function
for NNGP models

3 Simulation study

3.1 Response NNGP
models in Stan

3.2 Random-e!ects
NNGP models for
simulation study

4 Results and
Discussion

4.1 Response NNGP
model for simulation
study

4.2 Random-e!ects
NNGP models for
simulation study

4.3 Discussion

References

1 NNGP Based Models Nearest Neighbor Gaussian
Processes (NNGP) based models
in Stan
Lu Zhang

11/5/2017

1 NNGP Based Models
Nearest Neighbor Gaussian Processes (NNGP) based models is a family of highly
scalable Gaussian processes based models. In brief, NNGP extends the Vecchia’s
approximation (Vecchia (1988)) to a process using conditional independence
given information from neighboring locations. In this section, I will briefly review
response and random-e!ects NNGP models. For more details of NNGP, please
refer to Datta et al. (2016).

1.1 Spatial regression model
We envision a spatial regression model at any location

where, usually, and is a latent spatial process capturing
spatial dependence. Let be the set of observed locations. If we model the
process with a Gaussian process , then a customary
Bayesian hierarchical models for observations on can be
constructed as

Under the assumption that follows a Gaussian process, one can construct
the outcome process using convolution over the latent process . If we
integrate out and model response with a Gaussian process directly,
then the parameters set will collapse from to . In a Bayesian setting,
will be sampled from its posterior distribution

To distinguish these two models, we shall call the former as a random-e!ects
model, and the latter as a response model.

s

y(s) = (s) + w(s) + ϵ(s) , ϵ(s)  (0,) mθ ∼iid τ2 (1)

(s) = x(s βmθ)⊤ w(s)
S n

w(s) w(s) ∼ GP(0, (⋅, ⋅))Cθ
S = { , … , }s1 sN

p(θ) ×  (w(S) | 0, (S, S)) ×  (y(S) | (S) + w(S),)Cθ mθ τ2In (2)

w(s)
y(s) w(s)

w(s) y(s)
{θ, w} {θ} θ

p(θ | y(S)) ∝ p(θ) ×  (y(S) | (S), (S, S) +)mθ Cθ τ2In (3)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 2 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

1.2 Random-e!ects and Response NNGP
models
Nearest neighbor Gaussian process (NNGP) provides an alternative to the
Gaussian process in the models discussed in the preceding subsection. The
likelihoods of two models basing on NNGP derived from the original Gaussian
process coincide with the Vecchia’s approximation (Vecchia 1988) of the original
models. In particular, a random-e!ects NNGP model has a posterior distribution
proportional to

where is the precision matrix of the latent process
 over . Here is sparse and strictly lower triangular with at most (

) non-zero entries in each row, and is a diagonal matrix. One can
readily calculate the determinant of by the product of the diagonal elements
in . The likelihood of based on precision matrix serves as a good
approximation to the likelihood of in , while the storage and
computational burden of the former is linear in .

A response NNGP model yields posterior distribution:

where , analogous to random-e!ects
NNGP model, can be treated as an approximation of . Notice
that although one can obtain the response model by integrating out latent
process in a random-e!ects model, the corresponding NNGP model doesn’t have
this property.

1.3 Construction of ,
The details of the Matrix , and two models can be found in Finley et al. (2017).
Here we use the response NNGP model to show how to construct matrix and

. Let be at most closest points to among the locations indexed less
that . For the th row () of , the nonzero entries appear in the positions
indexed by are obtained as row vectors

And the th element on the diagonal of satisfies

These equations are derived from the distribution of . The
nonzero entries in each row of are precisely the weights obtained by predicting

, or “kriging”, based upon the values of at neighboring locations, i.e.,

p(θ) ×  (w(S) |) ×  (y(S) | (S) + w(S),)C∗ mθ τ2In (4)

= (I − A (I − A)C∗− 1)⊤D− 1

w(s) S A M
M ≪ N D

C∗

D w(S) C∗− 1

w(s) (2)
N

p(θ | y(S)) ∝ p(θ) ×  (y(S) | (S), { + I)mθ Cθ τ2 }∗ (5)

{ + I = (I − A (I − A)Cθ τ2 }∗− 1)⊤D− 1

{ (S, S) +Cθ τ2In}− 1

A D
A D

A
D N()si M si

i i i > 1 A
N()si

A(i, N()) = (, N())((N(), N()) + Isi Cθ si si Cθ si si τ2)− 1 (6)

i D

D(i, i) = (,) + − (, N())((N(), N()) + I (N(),)Cθ si si τ2 Cθ si si Cθ si si τ2)− 1Cθ si si

E[y()|y(N())]si si
A

y()si y(s)

file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20random-effects%20model

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 3 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

. And the diagonal elements in are the variance of conditioning on
its’ neighbors in the “past” .

2 Code NNGP Based Model in Stan
In this section, I will use a simulation data to show how to code NNGP based
models e!iciently in Stan.

2.1 Intro of simulation data
We generated response along with a covariate at randomly sited
locations in a unit square domain by the following model:

where the zero-centered spatial random e!ect were sampled from a
Gaussian process with a covariance function specified by exponential:

The predictor were generated from . The setting of parameters is listed
in the code.

rmvn <- function(N, mu = 0, V = matrix(1)){
 P <- length(mu)
 if(any(is.na(match(dim(V), P))))
 stop("Dimension problem!")
 D <- chol(V)
 t(matrix(rnorm(N * P), ncol = P) %*% D + rep(mu, rep(N,
P)))
}

set.seed(1234)
N <- 500
coords <- cbind(runif(N), runif(N))
X <- as.matrix(cbind(1, rnorm(N)))
B <- as.matrix(c(1, 5))
sigma.sq <- 2
tau.sq <- 0.1
phi <- 3 / 0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0, N), sigma.sq*R)
Y <- rnorm(N, X %*% B + w, sqrt(tau.sq))

N()si D y()si
y(N())si

Y x n= 500

y(s) = + x(s) + w(s) + ϵ(s), ϵ(s) ∼ N(0,)β0 β1 τ2 (8)

w(s)
Cθ

(,) = exp(− ϕ|| − ||), , ∈SCθ si sj σ2 si sj si sj (9)

x N(0, 1)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 4 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

2.2 Data block in Stan
The following block shows the elements needed for NNGP based models

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 }

Here the design matrix X contains an initial column of 1s, P is the number of
regression coe!icients, and M is the number of nearest neighbors (maximum
number of elements in each row of sparse matrix). Notice that we
provide three matrices NN_ind , NN_dist and NN_distM :

NN_ind is a two-dimensional array of indices whose th row shows at most
 closest points to among the locations indexed less that .

NN_dist is a matrix whose th row contains the distance of th location to
its selected neighbors.

NN_dist is a matrix whose th row contains the strictly lower triangular
part of the distance matrix of the selected neighbors of th location.

These three matrices are required for constructing the sparse lower triangular
matrix , and the diagonal matrix . Since they are fixed across the MCMC
updates, we recommend user to provide them in the data segment. Next, I will
show how to e!iciently generate the matrices listed above.

2.2.1 Build neighbor index
File “NNmatrix.R” provides a wrapper function in R that uses package spNNGP,
which has a fast algorithm of building neighbor index, to generate the required
matrices in the Stan data segment. Here n.omp.threads indicates the number
of threads to use for parallel processing.

source("NNmatrix.R")
M = 6 # Number of Nearest Neighbors
NN.matrix <- NNMatrix(coords = coords, n.neighbors = M, n
.omp.threads = 2)
str(NN.matrix)

n× n A

i − 1
M si i

i − 1 i

i − 1
i

A D

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 5 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

2.2.2 Check Neighbors (for fun)
We can use function Check_Neighbors in “NNmatrix.R” for checking the
nearest neighbor index. It is important to point out that NNMatrix sorts
coordinates on the first column before building the neighbor index. Thus we
should use the sorted response and design matrix instead of the raw data in the
data block.

Check_Neighbors(NN.matrix$coords.ord, n.neighbors = M, NN
.matrix, ind = 200)

2.3 Parameter and model block in Stan
We assign Gaussian priors for and , a uniform prior for and a Gaussian prior
for . The following is the parameter and model block for a random-
e!ects NNGP model.

σ τ ϕ
β = { , }β0 β1

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 6 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = ap, upper = bp> phi;
 vector[N] w;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 w ~ nngp_w(sigmasq, phi, NN_dist, NN_distM, NN_ind,
N, M);
 Y ~ normal(X * beta + w, tau);
 }

A small modification will make the code work for a response NNGP model:

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = ap, upper = bp> phi;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 Y ~ nngp(X * beta, sigmasq, tausq, phi, NN_dist, NN
_distM, NN_ind, N, M);
 }

Here, the user-defined functions nngp_w and nngp will be given in the
simulation study section.

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 7 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

2.4 User-defined likelihood function for
NNGP models
The hardest part in coding NNGP in Stan is the user-defined likelihood,
specifically, the function nngp_w and nngp in the last subsection. Here we use
nngp to illustrate the main idea of coding NNGP likelihood.

The log-likelihood of in is given by:

In the code below, vector U saves the results of , and
vector V saves all the diagonal elements of Matrix scaled by . With this
notation, the log-likelihood can be simplified as

where all the elements in the likelihood are vectors.

In the calculation of vector , since we know that
matrix has at most nonzero elements and the index of nonzero elements is
given in NN_ind , there is no need for saving the matrix . Instead, we
use a for loop to calculate . Within each iteration, we first use NN_dist and
NN_distM along with the updated parameter to obtain by and

 by , then use NN_ind and to calculate the th
element of . The flop required in each iteration is in the order of .

 functions{
 real nngp_lpdf(vector Y, vector X_beta, real sigmas
q, real tausq,
 real phi, matrix NN_dist, matrix NN_
distM, int[,] NN_ind,
 int N, int M){

 vector[N] V;
 vector[N] YXb;
 vector[N] U;
 int dim;
 int h;
 real kappa_p_1;
 real out;
 kappa_p_1 = tausq / sigmasq + 1;
 YXb = Y - X_beta;
 U = YXb;

y(S) (5)

− log − (y(S) − X(S β (I − A (I − A)(y(S) − X(S β)1
2 ∑

i= 1

N
Dii

1
2)⊤)⊤)TD− 1)⊤

(I − A)(y(S) − X(S β))⊤

D σ2

− { log + N log () + (U. /V)}1
2 ∑

i= 1

N
Vi σ2 1

σ2 U⊤ (10)

U = (I − A)(y(S) − X(S β))⊤

A M
n× n I − A

U
A(i, N())si (7)

D(i, i) (6) y(S) − X(S β)⊤ i
U M 3

file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20D_construct
file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20A_construct

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 8 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 for (i in 2:N) {
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1) ? (i - 1) : M] iNNcorr;
 vector[i < (M + 1) ? (i - 1) : M] v;
 row_vector[i < (M + 1) ? (i - 1) : M] v2;
 dim = (i < (M + 1))? (i - 1) : M;

 if(dim == 1){iNNdistM[1, 1] = kappa_p_1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = kappa_p_1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 for (j in 1: dim){
 iNNcorr[j] = exp(- phi * NN_dist[(i - 1
), j]);
 }

 v = mdivide_left_tri_low(iNNCholL, iNNcorr);

 V[i] = kappa_p_1 - dot_self(v);

 v2 = mdivide_right_tri_low(v', iNNCholL);

 for (j in 1:dim){
 U[i] = U[i] - v2[j] * YXb[NN_ind[(i - 1
), j]];
 }
 }

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 9 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 V[1] = kappa_p_1;
 out = - 0.5 * (1 / sigmasq * dot_product(U, (U
./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 return out;
 }
 }

3 Simulation study
Now let’s run the NNGP based models for the simulation data in the last section.
First set parameters of priors:

P = 1 # number of regression coefficient
s
ss = 3 * sqrt(2) # scale parameter in the normal pr
ior of sigma
st = 3 * sqrt(0.1) # scale parameter in the normal pr
ior of tau
ap = 3/1; bp = 3/0.1 # upper and lower bound of phi

3.1 Response NNGP models in Stan
The following chunk is the R code for running response NNGP models. It’s worth
mentioning that we use the response and design matrix sorted by the order from
NNMatrix instead of the raw Y and X in the data block.

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 10 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

library(rstan)
options(mc.cores = parallel::detectCores())
data <- list(N = N, M = M, P = P,
 Y = Y[NN.matrix$ord], X = X[NN.matrix$ord,]
, # sorted Y and X
 NN_ind = NN.matrix$NN_ind,
 NN_dist = NN.matrix$NN_dist,
 NN_distM = NN.matrix$NN_distM,
 uB = rep(0, P + 1), VB = diag(P + 1)*1000,
 ss = ss, st = st, ap = ap, bp = bp)

myinits <-list(list(beta = c(1, 5), sigma = 1, tau = 0.4,
phi = 20),
 list(beta = c(5, 5), sigma = 1.5, tau = 0.
2, phi = 5),
 list(beta = c(0, 0), sigma = 2.5, tau = 0.
1, phi = 9))

parameters <- c("beta", "sigmasq", "tausq", "phi")
samples <- stan(
 file = "nngp_response.stan",
 data = data,
 init = myinits,
 pars = parameters,
 iter = 400,
 chains = 3,
 thin = 1,
 seed = 123
)

The full Stan program for response NNGP model is in the file
“nngp_response.stan”.

writeLines(readLines('nngp_response.stan'))

 /* Response NNGP model */

 functions{
 real nngp_lpdf(vector Y, vector X_beta, real sigmas
q, real tausq,
 real phi, matrix NN_dist, matrix NN_
distM, int[,] NN_ind,
 int N, int M){

 vector[N] V;
 vector[N] YXb;

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 11 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 vector[N] U;
 int dim;
 int h;
 real kappa_p_1;
 real out;
 kappa_p_1 = tausq / sigmasq + 1;
 YXb = Y - X_beta;
 U = YXb;

 for (i in 2:N) {
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1) ? (i - 1) : M] iNNcorr;
 vector[i < (M + 1) ? (i - 1) : M] v;
 row_vector[i < (M + 1) ? (i - 1) : M] v2;
 dim = (i < (M + 1))? (i - 1) : M;

 if(dim == 1){iNNdistM[1, 1] = kappa_p_1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = kappa_p_1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 for (j in 1: dim){
 iNNcorr[j] = exp(- phi * NN_dist[(i - 1
), j]);
 }

 v = mdivide_left_tri_low(iNNCholL, iNNcorr);

 V[i] = kappa_p_1 - dot_self(v);

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 12 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 v2 = mdivide_right_tri_low(v', iNNCholL);

 for (j in 1:dim){
 U[i] = U[i] - v2[j] * YXb[NN_ind[(i - 1
), j]];
 }
 }
 V[1] = kappa_p_1;
 out = - 0.5 * (1 / sigmasq * dot_product(U, (U
./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 return out;
 }
 }

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 vector[P + 1] uB;
 matrix[P + 1, P + 1] VB;
 real ss;
 real st;
 real ap;
 real bp;
 }

 transformed data {
 cholesky_factor_cov[P + 1] L_VB;
 L_VB = cholesky_decompose(VB);
 }

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = ap, upper = bp> phi;
 }

 transformed parameters {

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 13 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 Y ~ nngp(X * beta, sigmasq, tausq, phi, NN_dist, NN
_distM, NN_ind, N, M);
 }

3.2 Random-e!ects NNGP models for
simulation study
The following chunk is the R code for running Random-e!ects NNGP models:

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 14 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

options(mc.cores = parallel::detectCores())
data <- list(N = N, M = M, P = P,
 Y = Y[NN.matrix$ord], X = X[NN.matrix$ord,]
, # sorted Y and X
 NN_ind = NN.matrix$NN_ind,
 NN_dist = NN.matrix$NN_dist,
 NN_distM = NN.matrix$NN_distM,
 uB = rep(0, P + 1), VB = diag(P + 1)*1000,
 ss = ss, st = st, ap = ap, bp = bp)

myinits <-list(list(beta = c(1, 5), sigma = 1, tau = 0.5,
phi = 20,
 w_b1 = rep(0, N)),
 list(beta = c(5, 5), sigma = 1.5, tau = 0.
2, phi = 5,
 w_b1 = rep(0.1, N)),
 list(beta = c(0, 0), sigma = 2.5, tau = 0.
1, phi = 9 ,
 w_b1 = rep(0, N)))

parameters <- c("beta", "sigmasq", "tausq", "phi", "w")
samples_w <- stan(
 file = "nngp_random.stan",
 data = data,
 init = myinits,
 pars = parameters,
 iter = 400,
 chains = 3,
 thin = 1,
 seed = 123
)

The full Stan program for random-e!ects NNGP model is in the file
“nngp_random.stan”.

writeLines(readLines('nngp_random_b1.stan'))

 /* Random-effects NNGP model with spatial random effect
centered at intercept */

 functions{
 real nngp_w_lpdf(vector w_b1, real sigmasq, real ph
i, matrix NN_dist,
 matrix NN_distM,int[,] NN_ind, int
N, int M,
 real intercept){

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 15 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 vector[N] V;
 vector[N] I_Aw;
 vector[N] w;
 int dim;
 int h;
 real out;
 w = w_b1 - intercept;
 I_Aw = w;

 for (i in 2:N) {
 matrix[i < (M + 1)? (i - 1) : M, i < (M +
1)? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1)? (i - 1) : M, i < (M +
1)? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1)? (i - 1) : M] iNNcorr;
 vector[i < (M + 1)? (i - 1) : M] v;
 row_vector[i < (M + 1)? (i - 1) : M] v2;

 dim = (i < (M + 1))? (i - 1) : M;

 // get exp(-phi * NN_distM)

 if(dim == 1){iNNdistM[1, 1] = 1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = 1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 for (j in 1: dim){
 iNNcorr[j] = exp(- phi * NN_dist[(i - 1
), j]);
 }

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 16 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 //vector[dim] v;
 v = mdivide_left_tri_low(iNNCholL, iNNcorr)
;

 V[i] = 1 - dot_self(v);

 v2 = mdivide_right_tri_low(v', iNNCholL);

 for (j in 1:dim){
 I_Aw[i] = I_Aw[i] - v2[j] * w[NN_ind[(i
- 1), j]];
 }
 }
 V[1] = 1;
 out = - 0.5 * (1 / sigmasq * dot_product(I_Aw,
(I_Aw ./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 return out;
 }
 }

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 vector[P + 1] uB;
 matrix[P + 1, P + 1] VB;
 real ss;
 real st;
 real ap;
 real bp;
 }

 transformed data {
 cholesky_factor_cov[P + 1] L_VB;
 L_VB = cholesky_decompose(VB);
 }

 parameters{

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 17 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = ap, upper = bp> phi;
 vector[N] w_b1;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 w_b1 ~ nngp_w(sigmasq, phi, NN_dist, NN_distM, NN_i
nd, N, M, beta[1]);
 Y ~ normal(block(X, 1, 2, N, P) * tail(beta, P) + w
_b1, tau);
 }

4 Results and Discussion
In this section, we will show the results of the simulation study, compare
response and random-e!ects NNGP models, and provide suggestions on how to
use NNGP based models.

4.1 Response NNGP model for simulation
study
Response NNGP model is faster and easier to sample from posterior distribution
than the random-e!ects NNGP models. The following shows the summary table
and trace plot of the posterior samples from response NNGP model.

print(samples)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 18 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: nngp_response.
3 chains, each with iter=400; warmup=200; thin=1;
post-warmup draws per chain=200, total post-warmup draws=
600.

 mean se_mean sd 2.5% 25% 50% 7
5% 97.5% n_eff
beta[1] 0.78 0.02 0.46 -0.19 0.46 0.79 1.
08 1.69 557
beta[2] 5.00 0.00 0.03 4.95 4.98 5.00 5.
02 5.06 507
sigmasq 2.19 0.03 0.50 1.43 1.79 2.13 2.
50 3.39 279
tausq 0.09 0.00 0.03 0.03 0.07 0.10 0.
12 0.15 284
phi 4.97 0.07 1.24 3.10 3.96 4.88 5.
79 7.59 307
lp__ -101.01 0.15 1.81 -105.44 -101.84 -100.62 -99.
73 -98.62 147
 Rhat
beta[1] 1.00
beta[2] 1.00
sigmasq 1.01
tausq 1.01
phi 1.01
lp__ 1.00

Samples were drawn using NUTS(diag_e) at Thu Nov 16 18:54
:19 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

stan_trace(samples)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 19 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

4.2 Random-e!ects NNGP models for
simulation study
The following gives the summary table posterior samples and trace plots of the
MCMC Chains from random-e!ects NNGP model:

print(samples_w, pars = c("beta", "sigmasq", "tausq", "ph
i", "w[1]", "w[2]",
 "w[3]", "w[4]"))

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 20 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: nngp_random.
3 chains, each with iter=400; warmup=200; thin=1;
post-warmup draws per chain=200, total post-warmup draws=
600.

 mean se_mean sd 2.5% 25% 50% 75% 97.5%
n_eff Rhat
beta[1] 0.75 0.15 0.21 0.42 0.58 0.70 0.96 1.15
2 2.25
beta[2] 5.00 0.00 0.03 4.95 4.98 5.00 5.02 5.06
40 1.06
sigmasq 2.13 0.03 0.44 1.44 1.81 2.06 2.40 3.11
266 1.00
tausq 0.08 0.03 0.04 0.01 0.03 0.08 0.11 0.15
2 2.20
phi 5.47 0.65 1.38 3.19 4.46 5.38 6.34 8.46
4 1.18
w[1] -0.05 0.11 0.32 -0.63 -0.27 -0.07 0.15 0.61
8 1.13
w[2] 0.99 0.09 0.32 0.43 0.78 0.97 1.19 1.68
13 1.08
w[3] -2.84 0.18 0.34 -3.43 -3.09 -2.85 -2.60 -2.18
4 1.30
w[4] -0.49 0.12 0.31 -1.04 -0.72 -0.51 -0.26 0.11
7 1.14

Samples were drawn using NUTS(diag_e) at Thu Nov 16 19:01
:11 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

stan_trace(samples_w, pars = c("beta", "sigmasq", "tausq"
, "phi", "w[1]",
 "w[2]","w[3]", "w[4]"))

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 21 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

It is not surprising to see a slower convergence rate and worse mixing of the
MCMC Chains. Response NNGP model marginalizes out the spatial e!ects ,
yields a lower-dimensional parameter space, hence drastically improves the
posterior geometry. While the parameters to be estimated in a random-e!ects
NNGP model are highly correlated, and the number of parameters is on
the scale of the number of observations. Thus the convergence rate of MCMC
chains from a random-e!ects NNGP is slow because of the high correlation and
dimension of the parameter space.

Notice the trace plot of random-e!ects are highly correlated with the intercept,
we modified the code and make the random-e!ects centered at the
intercept. The code of modified random-e!ects NNGP model can be found in
“nngp.R” and “nngp_random_b1.stan”. Here we suppress the details of the code
and show the results directly:

print(samples_wb1, pars = c("beta", "sigmasq", "tausq", "
phi", "w_b1[1]",
 "w_b1[2]", "w_b1[3]", "w_b1[4
]"))

w

{θ, w}

w
w(s)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 22 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: nngp_random_b1.
3 chains, each with iter=400; warmup=200; thin=1;
post-warmup draws per chain=200, total post-warmup draws=
600.

 mean se_mean sd 2.5% 25% 50% 75% 97.5%
n_eff Rhat
beta[1] 0.78 0.02 0.44 -0.05 0.49 0.79 1.07 1.65
600 1.00
beta[2] 5.01 0.00 0.03 4.96 4.99 5.00 5.02 5.06
354 1.00
sigmasq 2.20 0.03 0.50 1.45 1.82 2.12 2.52 3.39
381 1.00
tausq 0.09 0.00 0.02 0.05 0.08 0.09 0.11 0.14
47 1.02
phi 4.95 0.06 1.17 3.12 4.04 4.83 5.66 7.34
328 1.00
w_b1[1] 0.67 0.01 0.31 0.04 0.49 0.68 0.87 1.27
600 1.00
w_b1[2] 1.69 0.01 0.30 1.08 1.49 1.68 1.90 2.22
600 1.00
w_b1[3] -2.08 0.01 0.27 -2.63 -2.25 -2.07 -1.89 -1.52
600 1.00
w_b1[4] 0.24 0.01 0.29 -0.43 0.07 0.24 0.43 0.79
600 1.00

Samples were drawn using NUTS(diag_e) at Thu Nov 16 19:03
:56 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

stan_trace(samples_wb1, pars = c("beta", "sigmasq", "taus
q", "phi", "w_b1[1]",
 "w_b1[2]", "w_b1[3]", "w
_b1[4]"))

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 23 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

4.3 Discussion
We recommend a response NNGP model for a large scale data analysis when the
study focuses on the inference of parameter set . On the other hand, random-
e!ects NNGP models are preferred when the study needs the recovery of latent
process . However, the convergence rate of the MCMC Chains from random-
e!ects model could be prohibitively slow when the sample size is large, so we
only recommend coding random-e!ects NNGP model in Stan when the sample
size is small. For recovering latent process when the sample size is large, Package
spNNGP provides an algorithm for random-e!ects NNGP model, which
implements a “sequential” Gibbs sampler for updating the latent process.
Conjugate NNGP models are also good options for recovering latent process

. More details of NNGP based models can be found in Finley et al. (2017)

References
Datta, Abhirup, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. 2016.
“Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical
Datasets” 111. Taylor & Francis: 800–812.

Finley, Andrew O, Abhirup Datta, Bruce C Cook, Douglas C Morton, Hans E
Andersen, and Sudipto Banerjee. 2017. “Applying Nearest Neighbor Gaussian
Processes to Massive Spatial Data Sets Forest Canopy Height Prediction Across
Tanana Valley Alaska.”

Vecchia, A. V. 1988. “Estimation and Model Identification for Continuous Spatial
Processes.”

θ

w(s)

w(s)

11/21/17, 11'30 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 24 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

